

Acute Citrulline Malate Supplementation Does Not Improve 1-km Time-Trial Performance in Trained Female Kayak Paddlers

Original Research

Majid S. Koozehchian¹, Shima Mojtabaei², Russ Best³, Raúl Domínguez⁴, Mohammad Ali Gharaat⁵, Erfan Berjisian², Andrew Newton¹, Gina Mabrey¹, Alireza Naderi⁶

¹ Department of Kinesiology, Jacksonville State University, Jacksonville, Alabama, USA

² Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran

³ Centre for Sport Science & Human Performance, Waikato Institute of Technology, Hamilton, New Zealand

⁴ Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, Seville, Spain

⁵ Department of Physical Education, Farhangian University, Tehran, Iran

⁶ Department of Exercise Physiology, Borujerd Branch, Islamic Azad University, Borujerd, Iran

Abstract

Introduction: Citrulline malate (CM) has been reported to enhance performance during resistance training and high-intensity exercise; however, its ergogenic effects during kayak exercise have not been investigated. This study examined the effects of acute CM ingestion on 1-km kayak ergometer time-trial (TT) performance and ratings of perceived exertion (RPE) in trained female youth kayakers.

Methods: Fifteen trained female youth kayakers (age: 16.3 ± 1.1 y; body mass: 55.5 ± 6.7 kg; height: 164.3 ± 3.7 cm) completed three conditions in a randomized, double-blind, placebo-controlled crossover design: CM (8 g), placebo (PL; 6 g citric acid), and a control condition (CON; no supplement). Participants ingested CM and PL 60 min before a 1-km kayak ergometer TT. RPE (6–20) was recorded immediately upon TT completion.

Results: The TT completion time differed across conditions ($p = 0.001$; $\eta^2 = 0.44$). Compared with CON (270.8 ± 5.31 s), TT was faster following CM (262.6 ± 4.69 s; $p = 0.016$) and PL (261.8 ± 4.55 s; $p < 0.001$), with no difference between CM and PL ($p = 1.000$). The RPE also differed across conditions ($p = 0.025$; $\eta^2 = 0.23$); however, Bonferroni-adjusted pairwise comparisons did not reach statistical significance (CON vs CM: $p = 0.080$; CON vs PL: $p = 0.107$; CM vs PL: $p = 1.000$).

Conclusion: Acute CM supplementation did not improve 1-km kayak ergometer TT performance compared with placebo in trained female youth kayakers. The faster times observed in both CM and placebo compared with control may reflect non-specific effects (e.g., placebo/taste or pre-trial routines) and warrant further investigation.

Key Words: exercise performance, nitric oxide, ergogenic aids

Corresponding author: Majid Koozehchian, mkoozehchian@jsu.edu

Introduction

L-citrulline is a non-essential amino acid found abundantly in watermelon¹ and sold as citrulline malate (CM) in the sports nutrition market with a 1:1 and 2:1 ratio.^{2,3} In the last decade, sports nutrition scientists have conducted several

studies on CM that collectively suggest improvements in exercise performance.³⁻⁵ The possible ergogenic effects of CM are mediated by its capacity to increase nitric oxide (NO) level.³

L-citrulline is an endogenous precursor of arginine through conversion by lyase and argininosuccinate synthase, providing substrate for NO synthesis via nitric oxide synthase (NOS).⁶ L-citrulline is a more efficient substrate for elevating L-arginine concentrations and NO bioactivity than its supplementation.⁷ At higher NO levels, L-citrulline could increase muscle blood flow, oxidative substrates, and gas exchange, and enhance muscle contractility.⁸ Moreover, L-citrulline could facilitate ammonia buffering capabilities in the liver as a urea cycle component, improve pyruvate's oxidative utilization, and decrease lactate production.⁹ All these physiological mechanisms related to CM supplementation may lead to delayed muscle fatigue,¹⁰ improve oxidative ATP production,¹¹ and attenuate ratings of perceived exertion (RPE) when used to measure effort, exertion, breathlessness, and fatigue during strenuous exercise.⁹

While several studies have investigated acute CM supplementation during high-intensity efforts¹²⁻¹⁴ and during resistance training with equivocal results,^{2,3,12,15} few studies have examined cardiorespiratory endurance exercise modalities.^{5,16} Cardiorespiratory endurance includes all sports modalities in which ATP is mainly resynthesized via oxidative phosphorylation.¹⁷ Maximal oxygen consumption ($VO_{2\text{max}}$) reflects the maximum capability of the pulmonary, cardiovascular, and muscle systems to take up, transport, and utilize oxygen, predominantly in contracting muscle mitochondria.¹⁸ However, the minimum intensity corresponding to $VO_{2\text{max}}$ is maintained at approximately 5 minutes,¹⁷ the maximum effort with a duration longer than 1 minute mainly depends on oxidative metabolism, known as endurance-intensive efforts.¹⁹ Various studies have assessed the effects of CM on cardiorespiratory endurance.²⁰⁻²⁴ In this regard, a study using Bruce's graded treadmill test reported that neither pre-exercise watermelon juice nor L-citrulline supplementation (6g) increased time-to-exhaustion (TTE) performance.²⁵ Gliss et al²⁰ utilized a submaximal intensity test to assess the acute effect of CM supplementation (8g) during a cycling TTE protocol at 90% of peak oxygen consumption ($VO_{2\text{peak}}$) on recreationally active males. However, the study did not demonstrate any significant ergogenic effects of acute CM supplementation under these conditions. Bailey et al²¹ also did not report any ergogenic effect of L-citrulline-rich watermelon juice (~3.4 g/d for 16 days) in recreational athletes during a cycle ergometer at 70% $VO_{2\text{peak}}$. Stanelle et al²² found a reduction of more than 5% in time to cover during the 40-km time trial (TT) in trained cyclists, whereas another study failed to find significant differences in half-marathon performance after acute ingestion of watermelon juice enriched with 3.45 g of L-citrulline compared with a PL in recreational runners.²⁶ Regarding endurance-intensive efforts, Hickner et al⁴ reported that 24 h of supplementation with L-citrulline (9 g) and an acute supplement intake 3 hours before graded treadmill running improved TTE performance in 17 young active males and females. In another study, 7 days of citrulline supplementation at 2.4 g/day improved 4-km cycling TT performance by 1.5%.²³

However, to our knowledge, no studies have yet been conducted on kayak TT performance following CM supplementation. Olympic flat-water kayak is a popular sport in 500-m and 1000-m races, with about 86% of energy derived from oxidative metabolism during a 1000-m kayak match.^{24,27} To enhance kayak exercise performance, a few studies have examined ergogenic substances such as creatine monohydrate²⁸, β -alanine²⁹, and beetroot juice (BRJ) during kayak TT performance.^{30,31} As a NO-boosting ergogenic aid, BRJ effects show discrepancies. In this regard, Peeling et al³⁰ found an increased performance during a 500-m TT in international female kayakers and a trend to significant effect (with enhanced performance in 5 of 6 participants) in work done during a 4-min kayak ergometer test after 70 mL BRJ supplementation (4.8 mmol nitrate) in international male kayakers, whereas Muggeridge et al³¹ found no ergogenic effects of BRJ on TT performance during a 1-km kayak ergometer test after 70 mL BRJ in trained male kayakers. Given the limited studies investigating the ergogenic effects of CM during kayak exercise, this study aimed to determine whether acute ingestion of 8 g CM improves 1-km kayak ergometer TT performance in trained female kayakers. The primary hypothesis was that CM would reduce 1-km TT completion time compared with placebo (PL) and control (CON). The secondary hypothesis was that CM would reduce post-trial RPE compared with PL and CON. An acute 8 g CM dose was selected because 6–8 g is one of the most commonly used acute bolus doses in the adult CM performance literature and reviews^{2,3}, facilitating methodological alignment and comparison across studies. Based on the athletes' mean body mass (~55.5 kg), this dose corresponds to ~0.14 g·kg⁻¹. Oral L-citrulline is generally well tolerated in humans, with few adverse events reported in exercise studies, and gastrointestinal discomfort being the most commonly reported minor complaint when it occurs;²⁵ tolerability has also been reported for single oral doses up to 15 g in healthy volunteers.³² Given limited supplementation data in youth athletes, CM was administered as a single, supervised acute dose following health screening and exclusion of recent ergogenic aid use.

Methods

Participants

Fifteen female youth national-team kayakers with a minimum of four years of structured training experience (age: 16.3 ± 1.10 years; body mass: 55.5 ± 6.7 kg; height: 164.3 ± 3.7 cm) were recruited for this study. Participants were healthy and free of injury, as determined by a health screening questionnaire, and had not used ergogenic aids (e.g., creatine, β -alanine, or NO-boosting supplements) for at least 3 months prior to participation. All participants were informed of the study procedures, potential risks, and benefits before providing written informed consent. For participants under 18 years of age, written informed consent from a parent or guardian and participant assent were obtained. The Islamic Azad University of Borujerd Ethics Committee approved the study (IR.IAU.B.REC.1401.04.02). Training age was not quantified beyond the eligibility criterion (≥ 4 years), and biological maturation status (e.g., maturity offset/peak height velocity) was not assessed; these factors may contribute to inter-individual variability in supplement responsiveness in youth athletes.

An a priori power analysis for this crossover design was not performed because no published data were available on 1-km kayak ergometer time-trial responses to CM in trained female youth athletes, limiting the defensibility of assumptions about the expected effect size and within-subject correlation. Therefore, a pragmatic recruitment strategy was used, and all eligible athletes from the national youth program who met the inclusion criteria were enrolled ($n=15$). Because each participant completed all experimental conditions, the crossover design reduces between-subject variability and improves statistical efficiency compared with a parallel-group design. Effect sizes and 95% confidence intervals are reported alongside p-values to aid interpretation.

Protocol

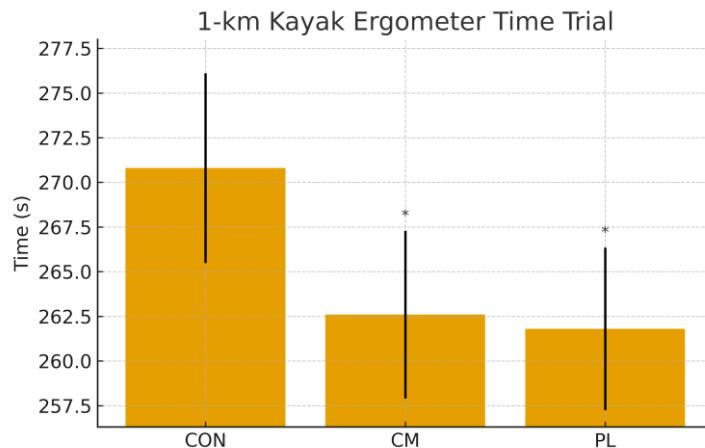
In a randomized, double-blind, placebo-controlled study design, participants, who were experienced in the use of a kayak ergometer as a performance measurement tool, attended the laboratory four times (Figure 1). Visits comprised one familiarization session and three experimental sessions, including CM, PL, and CON, with a one-week washout between visits. During the familiarization session, participants were informed of the test procedure and performed the exercise test protocol once.

Participants, outcome assessors, and the investigator supervising testing were blinded to the supplement condition during the CM and PL sessions. Participants ingested CM and PL in identical volumes (200 mL) 60 min before the 1-km time trial, and the PL was selected to match the taste/acidity profiles. The CON session involved no supplementation; therefore, blinding was not applicable.

The trials were administered to each participant on the same day and at the same time to minimize circadian rhythm effects. Before the familiarization session, the participants were instructed to record their dietary intake for 24 hours. During the experimental trials, they had to replicate their dietary intake as recorded in the food diaries. They were asked to avoid caffeine-rich beverages and coffee 24 h before the test and strenuous exercise 48 h before each session. The Hooper index questionnaire was used in each session to monitor fatigue.^{33,34}

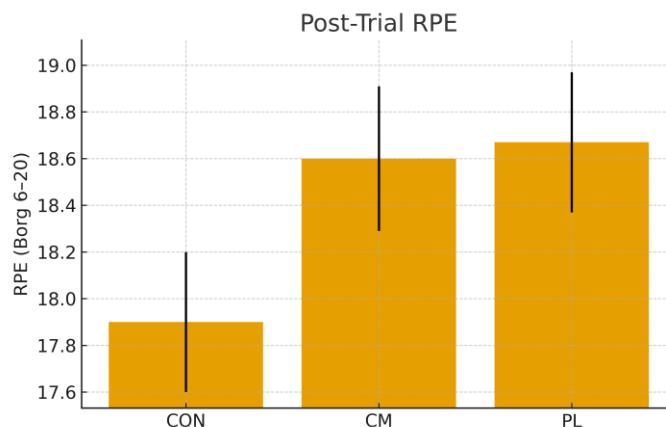
Experimental Session

Participants arrived at the laboratory one hour before starting the test. They ingested 8 g of CM (BULK SUPPLEMENTS, Henderson, NV, USA) at a 2:1 L-citrulline-to-malic acid ratio, or 6 g of citric acid as PL dissolved in 200 mL of water.¹⁵ Citric acid was chosen to reproduce the taste of CM as used in previous studies.¹⁵ Each participant completed a 1-km fixed-distance TT on a kayak ergometer (KayakPro SUPERgo, Miami, FL, USA) 1 hour after ingestion. The ergometer drag setting was adjusted for youth kayakers via a flywheel damper set to 1.5 to provide appropriate resistance for female youth lightweight kayakers. Each test was preceded by enough time for general and specific warm-ups,²⁹ and accompanied by strong verbal encouragement. The RPE (6–20) was measured at the end of the test. Participants were queried for adverse events (e.g., gastrointestinal discomfort, headache, dizziness) during each visit and were instructed to report any delayed symptoms within 24 h of ingestion.


Statistical Analysis

Data are presented as mean \pm standard deviation (SD). Normality of residuals was assessed using the Shapiro–Wilk test, and homogeneity of variance was assessed using Levene's test. Differences among conditions (CM, PL, CON) were analyzed using one-way repeated-measures ANOVA. When a significant main effect was observed, pairwise comparisons were performed with Bonferroni adjustment, and exact adjusted p-values are reported. Effect sizes for

main effects were reported as partial eta squared (η^2). All analyses were conducted in SPSS (Version 21; SPSS Inc., Chicago, IL, USA).


Results

The 1-km TT completion time showed a significant effect of condition ($F = 11.0, p = 0.001; \eta^2 = 0.44$; Figure 1). Post hoc comparisons (Bonferroni-adjusted) indicated faster completion times in both the CM condition (262.6 ± 4.69 s; $p = 0.016$) and the PL condition (261.8 ± 4.55 s; $p < 0.001$) compared with CON (270.8 ± 5.31 s). There was no difference between CM and PL ($p = 1.000$).

Figure 1. 1-km kayak ergometer time-trial completion time (s) across conditions in trained female youth kayak paddlers (n=15). Bars represent mean \pm SD. Conditions: CM = citrulline malate (8 g, 60 min pre-trial), PL = placebo (6 g citric acid, 60 min pre-trial), CON = control (no supplement). One-way repeated-measures ANOVA: $p = 0.001$ ($F = 11.0$). Bonferroni-adjusted pairwise comparisons: CM vs CON $p = 0.016$; PL vs CON $p < 0.001$; CM vs PL $p = 1.000$. * indicates $p < 0.05$ vs CON (Bonferroni-adjusted). Asterisks are displayed above the CM and PL bars.

The RPE showed a significant effect of condition ($F = 4.21, p = 0.025; \eta^2 = 0.23$; Figure 2). Although mean RPE was lowest in CON (17.9 ± 0.30), post hoc comparisons (Bonferroni-adjusted) did not reach statistical significance versus CM (18.6 ± 0.31 ; $p = 0.080$) or PL (18.6 ± 0.30 ; $p = 0.107$). No difference was observed between CM and PL ($p = 1.000$). Accordingly, no significance symbols are shown in Figure 2.

Figure 2. Ratings of perceived exertion (RPE; Borg 6-20) recorded immediately after the 1-km kayak ergometer time trial across conditions in trained female youth kayak paddlers (n=15). Bars represent mean \pm SD. Conditions: CM = citrulline malate (8 g, 60 min pre-trial), PL = placebo (6 g citric acid, 60 min pre-trial), CON = control (no supplement). One-way repeated-measures ANOVA: $p = 0.025$ ($F = 4.21$). Bonferroni-adjusted pairwise comparisons: CON vs CM

$p = 0.080$; CON vs PL $p = 0.107$; CM vs PL $p = 1.000$. No pairwise comparisons were significant; therefore, no significance symbols are shown.

Discussion

The main findings of this investigation were that CM supplementation significantly improved 1-km kayak ergometer performance compared with CON, but not with PL treatments. Despite a small positive effect, it did not have a significant impact on RPE. However, similar results were observed following PL supplementation, with significantly improved performance and greater RPE compared with CON.

To examine the effects of NO precursor supplements on kayak performance, Peeling,³⁰ in contrast to our findings, reported a significant reduction in the time to cover during 500-m TT kayak performance in female-trained athletes after BRJ supplementation. Conversely, Muggeridge et al³¹ reported no ergogenic effect of BRJ supplementation on 1-km TT performance in trained kayakers. These contrasting BRJ findings underscore that kayak-specific ergogenic outcomes may depend on race distance (e.g., 500 m vs 1-km), testing modality (on-water vs ergometer), and participant characteristics (e.g., sex and training status), which should be considered when interpreting and comparing supplementation studies in kayakers.^{30,31} While this study did not observe an ergogenic benefit of acute CM supplementation compared to PL in trained female youth kayakers, other studies have assessed the effect of CM supplementation during endurance-intensive efforts. Bailey et al³⁵ reported that CM supplementation significantly improved performance following a 60-second all-out sprint in recreationally active men. Other studies also reported that CM supplementation improved TTE performance during a gradual running test⁴ and a 4-km cycling TT.²³

Cardiorespiratory endurance performance is mediated by VO_{2max} economy and the ability to sustain a high fraction of VO_{2max} during long periods before blood lactate concentration increases.³⁶ Previously, studies that assessed the effect of CM supplementation during gradual exercise tests failed to modify VO_{2max}.^{4,25} At the same time, a meta-analysis reported a non-significant effect of CM supplementation on running economy, with no ergogenic effects of CM on VO₂ kinetics in endurance efforts.³⁷ The NO concentrations, however, were not measured in this investigation. The dosage and timing used in the present study were within a range reported to increase NO levels in previously published studies.³⁸ Therefore, it could be speculated that an increase in NO levels provokes vasodilation and an increase in muscle blood flow, promoting the transfer of oxygen and oxidative substrates (i.e., glucose) to the active muscle, with possible reduced VO₂ and efficiency at submaximal intensities in cardiorespiratory sport modalities.¹⁷ Nevertheless, the absence of ergogenic effects in the current and other studies related to CM supplementation in endurance-intensive efforts^{20,21} may be that due to the training status of the athletes, they already possess the metabolic adaptations to pathways that CM supplementation mimics (e.g., higher NO levels, reduced VO₂ during exercise, PCR sparing).³⁹ Indeed, similar null effects have been noted following BRJ supplementation and passive heat exposure in elite athletes.^{40,41} Although CM and BRJ are both often framed as NO-related ergogenic strategies, they act via distinct upstream pathways. L-citrulline and L-arginine availability can be elevated by CM to support NOS-dependent NO synthesis.⁷ In contrast, BRJ provides dietary nitrate, which can be reduced to nitrite and then to NO via the nitrate–nitrite–NO pathway.³⁹ These mechanistic differences may contribute to divergent outcomes across protocols; additionally, BRJ effects in trained athletes may be more sensitive to dosing strategy (including multi-day loading) to induce physiologically small but competitively meaningful performance changes.^{42,43}

Youth training age and maturation status may have confounded responses to CM in the present study. Although all participants were trained, adolescence is characterized by substantial inter-individual variability in biological maturation even within a narrow chronological age range, which can influence neuromuscular capacity and physical performance.^{44–46} These maturation-related differences may also influence fatigue tolerance and internal load responses (including perceived exertion).^{47–49} Maturation-related differences may additionally impact physiological pathways relevant to CM (e.g., NO bioavailability and endothelial/vascular responses), potentially contributing to heterogeneous responses across individuals.^{50,51} Future studies in youth athletes should quantify training age and training volume and incorporate an indicator of biological maturity (e.g., maturity offset/years from peak height velocity) to enable stratified analyses or covariate adjustment.

No significant differences were found between CM and PL for either 1-km TT or RPE, suggesting expectancy and placebo effects, likely mediated by supplement taste, similar to previous work on sprint and power performance.⁵² Efforts were made to taste-match CM and PL supplementation, which may have contributed to the ergogenic effects observed in both conditions compared to CON.⁵³ Citric acid, used as the taste-matched PL, can potentially increase intracellular citrate levels in animal models,⁵⁴ affecting downstream metabolism related to energy availability. However,

the supplemented dose was unlikely to be either ergogenic or inhibitory.^{54,55} Taste responses can also be highly individual, potentially increasing variance within a dataset but allowing for individualization of supplementation strategies in practice.⁵³

Participants were deemed appropriately familiar with the 1-km protocol, as it formed part of their regular training and testing cycles, so learning effects due to insufficient familiarization can be discounted. This is supported by mean RPE values that lie within 1 AU across all conditions, indicating that participants exerted near-maximal effort in each trial (Figure 2). Compared to PL and CM conditions, the lower RPE value in CON suggests a placebo effect contributing to the total intervention effect.⁵⁶ We also acknowledge that short-duration, high-intensity aerobic activity of similar durations has required more trials to demonstrate familiarization.⁵⁷ However, this was impractical in the current study due to the additional time it would have taken away from athletes' training. Finally, because maturation status and detailed training history were not quantified, we could not determine whether these factors influenced individual responses to CM versus placebo; this should be addressed in future adolescent supplementation studies.

Conclusion

In trained female youth kayakers, acute CM ingestion (8 g, 60 min pre-exercise) did not improve 1-km kayak ergometer time-trial performance or post-trial RPE compared with the taste-matched placebo. Although both CM and placebo were faster than the no-supplement control, this pattern may reflect non-specific effects (e.g., expectancy/taste and/or differences in pre-trial routines) rather than a CM-specific ergogenic benefit.

Future research should (a) include larger samples and quantify training age and biological maturation, (b) test alternative dosing strategies (e.g., multi-day loading) and measure mechanistic markers (e.g., NO-related biomarkers), and (c) examine kayak-relevant outcomes across different distances and modalities (on-water vs ergometer) to determine whether any CM effects are context-dependent.

Acknowledgements. We would like to thank all participants for their contributions.

Conflicts of Interest. The authors declare no conflicts of interest.

References

1. Naderi A, Rezaei S, Moussa A, Levers K, Earnest CP. Fruit for sport. *Trends Food Sci Technol.* 2018;74:85–98.
2. Aguiar AF, Casonatto J. Effects of citrulline malate supplementation on muscle strength in resistance-trained adults: a systematic review and meta-analysis of randomized controlled trials. *J Diet Suppl.* 2022;19(6):772–790.
3. Trexler E, Persky A, Ryan E, Schwartz T, Stoner L, Smith-Ryan A. Acute effects of citrulline supplementation on high-intensity strength and power performance: A systematic review and meta-analysis. *Sports Med.* 2019;49(5):707–718.
4. Hickner RC, Tanner CJ, Evans CA, et al. L-citrulline reduces time to exhaustion and insulin response to a graded exercise test. *Med Sci Sports Exer.* 2006;38(4):660–666.
5. Gentilin A, Zanini P, Cevese A, Schena F, Tarperi C. Ergogenic effects of citrulline supplementation on exercise performance and physiological indexes of exercise performance during cycling tests: a review. *Sci Sports.* 2022;37(8):665–674.
6. Joles JA, Palencia JYP, Saraiva A, et al. Effectiveness of citrulline and N-carbamoyl glutamate as arginine precursors on reproductive performance in mammals: a systematic review. *PLoS One.* 2018;13(12):e0206204.
7. Schwedhelm E, Maas R, Freese R, et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. *Br J Clin Pharmacol.* 2008;65(1):51–59.
8. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. *Physiol Rev.* 2001;81(1):209–237.
9. Rhim HC, Kim SJ, Park J, Jang K-M. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: a systematic review and meta-analysis. *J Sport Health Sci.* 2020;9(6):553–561.
10. Breuillard C, Cynober L, Moinard C. Citrulline and nitrogen homeostasis: an overview. *Amino Acids.* 2015;47(4):685–691.
11. Bendahan D, Mattei JP, Ghattas B, Confort-Gouny S, Le Guern ME, Cozzone PJ. Citrulline/malate promotes aerobic energy production in human exercising muscle. *Br J Sports Med.* 2002;36(4):282–289.
12. Glenn JM, Gray M, Jensen A, Stone MS, Vincenzo JL. Acute citrulline-malate supplementation improves maximal strength and anaerobic power in female, masters athletes tennis players. *Eur J Sport Sci.* 2016;16(8):1095–1103.

13. Cunniffe B, Papageorgiou M, O'Brien B, Davies NA, Grimble GK, Cardinale M. Acute citrulline-malate supplementation and high-intensity cycling performance. *J Strength Cond Res.* 2016;30(9):2638–2647.
14. Buckinx F, Gouspillou G, Carvalho LP, et al. Effect of high-intensity interval training combined with L-citrulline supplementation on functional capacities and muscle function in dynapenic-obese older adults. *J Clin Med.* 2018;7(12):561.
15. Chappell AJ, Allwood DM, Johns R, et al. Citrulline malate supplementation does not improve German Volume Training performance or reduce muscle soreness in moderately trained males and females. *J Int Soc Sports Nutr.* 2018;15(1):42.
16. Gough LA, Sparks SA, McNaughton LR, et al. A critical review of citrulline malate supplementation and exercise performance. *Eur J Appl Physiol.* 2021;121(12):3283–3295.
17. Domínguez R, Cuenca E, Maté-Muñoz JL, et al. Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes: a systematic review. *Nutrients.* 2017;9(1):43.
18. Poole DC, Jones AM. Measurement of the maximum oxygen uptake Vo_2max : Vo_2peak is no longer acceptable. *J Appl Physiol.* 2017;122(4):997–1002.
19. Chamari K, Padulo J. 'Aerobic' and 'Anaerobic' terms used in exercise physiology: a critical terminology reflection. *Sports Med Open.* 2015;1(1):9.
20. Gills JL, Glenn JM, Gray M, Romer B, Lu H. Acute citrulline-malate supplementation is ineffective during aerobic cycling and subsequent anaerobic performance in recreationally active males. *Eur J Sport Sci.* 2020;21(1):77–83.
21. Bailey SJ, Blackwell JR, Williams E, et al. Two weeks of watermelon juice supplementation improves nitric oxide bioavailability but not endurance exercise performance in humans. *Nitric Oxide.* 2016;59:10–20.
22. Stanelle ST, McLaughlin KL, Crouse SF. One week of L-citrulline supplementation improves performance in trained cyclists. *J Strength Cond Res.* 2020;34(3):647–652.
23. Suzuki T, Morita M, Kobayashi Y, Kamimura A. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: double-blind, randomized, placebo-controlled, 2-way crossover study. *J Int Soc Sports Nutr.* 2016;13:6.
24. Michael JS, Rooney KB, Smith R. The metabolic demands of kayaking: a review. *J Sports Sci Med.* 2008;7(1):1–7.
25. Cutrufello PT, Gadomski SJ, Zavorsky GS. The effect of L-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. *J Sports Sci.* 2014;33(14):1459–1466.
26. Martínez-Sánchez A, Ramos-Campo DJ, Fernández-Lobato B, Rubio-Arias JA, Alacid F, Aguayo E. Biochemical, physiological, and performance response of a functional watermelon juice enriched in L-citrulline during a half-marathon race. *Food Nutr Res.* 2017;61(1):1330098.
27. Zouhal H, Le Douairon Lahaye S, Abderrahaman AB, Minter G, Herbez R, Castagna C. Energy system contribution to Olympic distances in flat water kayaking (500 and 1,000 m) in highly trained subjects. *J Strength Cond Res.* 2012;26(3):825–831.
28. McNaughton LR, Dalton B, Tarr J. The effects of creatine supplementation on high-intensity exercise performance in elite performers. *Eur J Appl Physiol Occup Physiol.* 1998;78(3):236–240.
29. Bech SR, Nielsen TS, Hald M, Jakobsen JP, Nordsborg NB. No effect of β -alanine on muscle function and kayak performance. *Med Sci Sports Exerc.* 2018;50(3):562–569.
30. Peeling P, Cox GR, Bullock N, Burke LM. Beetroot juice improves on-water 500 m time-trial performance and laboratory-based paddling economy in national and international-level kayak athletes. *Int J Sport Nutr Exer Metab.* 2015;25(3):278–284.
31. Muggeridge DJ, Howe CC, Spendiff O, Pedlar C, James PE, Easton C. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. *Int J Sport Nutr Exer Metab.* 2013;23(5):498–506.
32. Moinard C, Nicolis I, Neveux N, Darquy S, Bénazeth S, Cynober L. Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudoze pharmacokinetic study. *Br J Nutr.* 2008;99(4):855–862.
33. Rezaei S, Akbari K, Gahreman DE, et al. Caffeine and sodium bicarbonate supplementation alone or together improve karate performance. *J Int Soc Sports Nutr.* 2019;16(1):44.
34. Hooper SL, Mackinnon LT, Howard A, Gordon RD, Bachmann AW. Markers for monitoring overtraining and recovery. *Med Sci Sports Exerc.* 1995;27(1):106–112.
35. Bailey SJ, Blackwell JR, Lord T, Vanhatalo A, Winyard PG, Jones AM. L-citrulline supplementation improves O₂ uptake kinetics and high-intensity exercise performance in humans. *J Appl Physiol.* 2015;119(4):385–395.

36. Campos Y, Casado A, Vieira JG, et al. Training-intensity distribution on middle- and long-distance runners: a systematic review. *Int J Sports Med.* 2022;43(4):305–316.

37. Viribay A, Fernández-Landa J, Castañeda-Babarro A, Collado PS, Fernández-Lázaro D, Mielgo-Ayuso J. Effects of citrulline supplementation on different aerobic exercise performance outcomes: a systematic review and meta-analysis. *Nutrients.* 2022;14(17):3479.

38. Gonzalez AM, Trexler ET. Effects of citrulline supplementation on exercise performance in humans: a review of the current literature. *J Strength Cond Res.* 2020;34(5):1480–1495.

39. Jones AM. Dietary nitrate supplementation and exercise performance. *Sports Med.* 2014;44(Suppl 1):S35–S45.

40. Bescos R, Ferrer-Roca V, Galilea PA, et al. Sodium nitrate supplementation does not enhance performance of endurance athletes. *Med Sci Sports Exerc.* 2012;44(12):2400–2409.

41. Stevens CJ, Ross ML, Carr AJ, et al. Postexercise hot-water immersion does not further enhance heat adaptation or performance in endurance athletes training in a hot environment. *Int J Sports Physiol Perform.* 2020;16(4):480–488.

42. Cermak NM, Gibala MJ, van Loon IJC. Nitrate supplementation's improvement of 10-km time-trial performance in trained cyclists. *Int J Sport Nutr Exerc Metab.* 2012;22(1):64–71.

43. Vanhatalo A, Bailey SJ, Blackwell JR, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. *Am J Physiol Regul Integr Comp Physiol.* 2010;299(4):R1121–R1131.

44. Malina RM, Rogol AD, Cumming SP, Coelho e Silva MJ, Figueiredo AJ. Biological maturation of youth athletes: assessment and implications. *Br J Sports Med.* 2015;49(13):852–859.

45. Lloyd RS, Oliver JL, Faigenbaum AD, Myer GD, De Ste Croix MB. Chronological age vs. biological maturation: implications for exercise programming in youth. *J Strength Cond Res.* 2014;28(5):1454–1464.

46. Standing RJ, Maulder PS, Best R, Berger NJA. The influence of maturation on functional performance and injury markers in male youth. *Cogent Med.* 2019;6(1):1632017.

47. Towlson C, Salter J, Ade JD, et al. Maturity-associated considerations for training load, injury risk, and physical performance in youth soccer: one size does not fit all. *J Sport Health Sci.* 2021;10(4):403–412.

48. Teixeira JE, Alves AR, Ferraz R, et al. Effects of chronological age, relative age, and maturation status on accumulated training load and perceived exertion in young sub-elite football players. *Front Physiol.* 2022;13:832202.

49. Mandorino M, Figueiredo AJ, Condello G, Tessitore A. The influence of maturity on recovery and perceived exertion, and its relationship with illnesses and non-contact injuries in young soccer players. *Biol Sport.* 2022;39(4):839–848.

50. Marlatt KL, Steinberger J, Dengel DR, et al. Impact of pubertal development on endothelial function and arterial elasticity. *J Pediatr.* 2013;163(5):1432–1436.

51. Wójcik M, Starzyk JB, Drożdż M, Drożdż D. Effects of puberty on blood pressure trajectories—underlying processes. *Curr Hypertens Rep.* 2023;25(7):117–125.

52. Best R, Temm D, Hucker H, McDonald K. Repeated menthol mouth swilling affects neither strength nor power performance. *Sports.* 2020;8(6):90.

53. Best R, McDonald K, Hurst P, Pickering C. Can taste be ergogenic? *Eur J Nutr.* 2021;60(1):45–54.

54. Fan SZ, Lin CS, Wei YW, et al. Dietary citrate supplementation enhances longevity, metabolic health, and memory performance through promoting ketogenesis. *Aging Cell.* 2021;20(12):e13510.

55. Iacobazzi V, Infantino V. Citrate – new functions for an old metabolite. *Biol Chem.* 2014;395(4):387–399.

56. Marticorena FM, Carvalho A, de Oliveira LF, et al. Nonplacebo controls to determine the magnitude of ergogenic interventions: a systematic review and meta-analysis. *Med Sci Sports Exerc.* 2021;53(8):1766–1777.

57. Smith JC, Hill DW. Stability of parameter estimates derived from the power/time relationship. *Can J Appl Physiol.* 1993;18(1):43–47.