Agreement Between Six Bioelectrical Impedance Analysis Devices and Dual-Energy X-Ray Absorptiometry Original Research
Main Article Content
Keywords
Body composition assessment, body fat percentage
Abstract
Introduction: Bioelectrical impedance analysis (BIA) is a low-cost, accessible method to assess percent body fat (%BF). Rising recognition of the role of body composition in overall health and disease prevention has led to an increased usage of at-home BIA devices. The purpose of this study was to assess the level of agreement between six BIA devices and dual-energy x-ray absorptiometry (DXA).
Methods: Male (n=42) and female (n=35) participants completed body composition testing on six different BIA devices and a DXA scan Agreement was assessed using intraclass correlation coefficients (ICC) with 95% confidence intervals, Spearman’s correlations, and Bland-Altman analyses to determine limits of agreement (LoA) for %BF.
Results: Four BIA devices demonstrated moderate reliability (ICC: 0.66-0.73) and two devices demonstrated poor reliability (ICC: 0.25 and 0.43). The most favorable agreement profile from a BIA device was a mean bias of -2.21% and relatively narrow LoA (-9.88% - 5.46%). The least favorable agreement profile from a BIA device was a mean bias of 2.88% and LoA of –10.25% –16.01%.
Conclusions: The present study indicated that multi-frequency BIA devices outperformed single-frequency BIA devices, and that the Omron had the highest LoA with DXA.
References
2. American College of Sports Medicine, Liguori G, Feito Y, Fountaine CJ, Roy B, eds. ACSM’s Guidelines for Exercise Testing and Prescription. Eleventh edition. Wolters Kluwer; 2022.
3. Kopelman P. Health risks associated with overweight and obesity. Obes Rev. 2007;8(s1):13-17. doi:10.1111/j.1467-789X.2007.00311.x
4. Fosbøl MØ, Zerahn B. Contemporary methods of body composition measurement. Clin Physiol Funct Imaging. 2015;35(2):81-97. doi:10.1111/cpf.12152
5. Prior BM, Cureton KJ, Modlesky CM, et al. In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. J Appl Physiol. 1997;83(2):623-630. doi:10.1152/jappl.1997.83.2.623
6. Sun G, French CR, Martin GR, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr. 2005;81(1):74-78. doi:10.1093/ajcn/81.1.74
7. Bazzocchi A, Ponti F, Albisinni U, Battista G, Guglielmi G. DXA: Technical aspects and application. Eur J Radiol. 2016;85(8):1481-1492. doi:10.1016/j.ejrad.2016.04.004
8. Kelly TL, Wilson KE, Heymsfield SB. Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES. Vella A, ed. PLoS ONE. 2009;4(9):e7038. doi:10.1371/journal.pone.0007038
9. Mialich MS, Sicchieri JMF, Junior AAJ. Analysis of Body Composition: A Critical Review of the Use of Bioelectrical Impedance Analysis. International Journal of Clinical Nutrition. 2014;2(1):1-10.
10. Lukaski H, Johnson P, Bolonchuk W, Lykken G. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41(4):810-817. doi:10.1093/ajcn/41.4.810
11. Lukaski H. Biological indexes considered in the derivation of the bioelectrical impedance analysis. Am J Clin Nutr. 1996;64(3):397S-404S. doi:10.1093/ajcn/64.3.397S
12. Dixon CB, Andreacci JL. Effect of Resistance Exercise on Percent Body Fat Using Leg-to-Leg and Segmental Bioelectrical Impedance Analysis in Adults. J Strength Cond Res. 2009;23(7):2025-2032. doi:10.1519/JSC.0b013e3181b86735
13. Tinsley GM, Morales E, Forsse JS, Grandjean PW. Impact of Acute Dietary Manipulations on DXA and BIA Body Composition Estimates. Med Sci Sports Exerc. 2017;49(4):823-832. doi:10.1249/MSS.0000000000001148
14. Feng Q, Bešević J, Conroy M, Omiyale W, Lacey B, Allen N. Comparison of body composition measures assessed by bioelectrical impedance analysis versus dual-energy X-ray absorptiometry in UK Biobank. Published online November 1, 2023. doi:10.1101/2023.11.01.23297916
15. Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab. 2004;89(6):2569-2575. doi:10.1210/jc.2004-0165
16. Thajer A, Skacel G, Truschner K, et al. Comparison of Bioelectrical Impedance-Based Methods on Body Composition in Young Patients with Obesity. Child Basel Switz. 2021;8(4):295. doi:10.3390/children8040295
17. Grand View Research. Body Fat Measurement Market Size, Share & Trends Analysis Report By Product Type (BIA, DEXA), By End-User (Hospitals & Clinics, Fitness Centers & Gymnasiums), By Region, And Segment Forecasts, 2023 - 2030.; 2023. https://www.grandviewresearch.com/industry-analysis/body-fat-measurement-market
18. Johannessen E, Johansson J, Hartvigsen G, Horsch A, Årsand E, Henriksen A. Collecting health-related research data using consumer-based wireless smart scales. Int J Med Inf. 2023;173:105043. doi:10.1016/j.ijmedinf.2023.105043
19. Feng Q, Bešević J, Conroy M, Omiyale W, Lacey B, Allen N. Comparison of body composition measures assessed by bioelectrical impedance analysis versus dual-energy X-ray absorptiometry in the United Kingdom Biobank. Clin Nutr ESPEN. 2024;63:214-225. doi:10.1016/j.clnesp.2024.06.040
20. Kavouras SA. Assessing hydration status: Curr Opin Clin Nutr Metab Care. 2002;5(5):519-524. doi:10.1097/00075197-200209000-00010
21. Perrier E, Rondeau P, Poupin M, et al. Relation between urinary hydration biomarkers and total fluid intake in healthy adults. Eur J Clin Nutr. 2013;67(9):939-943. doi:10.1038/ejcn.2013.93